knitr::opts_chunk$set(echo = TRUE)
library(caret)
library(R.matlab)
library(tidyverse)
library(pROC)
library(broom)
library(kableExtra)
library(rlang)
library(testthat)
library(doParallel)
source("train_pls_formulae.R")
n_cores <- detectCores()
message(sprintf("Using %d cores", n_cores))
## Using 20 cores
Note: the output HTML & the training RDS data are saved in PLS.
name | value |
---|---|
Cohort name | MESA |
Risk factor | Smoking |
Maximum number of PLS components | 30 |
Pct PCA variance explained (%) | 99.9 |
Data file | MESA_UKBB_FinalData.csv |
dt.ori <- read_csv(datafile, show_col_types = FALSE) %>%
filter(Cohort == params$cohort) %>%
select(c(ID, Age, Sex, NoRisk, sym(params$rf_name))) %>%
mutate(
!!sym(params$rf_name) := recode_factor(as.factor(!!sym(params$rf_name)), "FALSE" = "NO_RISK", "TRUE" = "RISK"),
Sex = as.factor(Sex)
)
message(sprintf("Original %s: %d rows", params$cohort, nrow(dt.ori)))
## Original MESA: 2106 rows
dt.norf <- filter(dt.ori, NoRisk)
message(sprintf("No risk sub-cohort %s: %d rows", params$cohort, nrow(dt.norf)))
## No risk sub-cohort MESA: 397 rows
dt.rf <- filter(dt.ori, !!sym(params$rf_name) == "RISK")
message(sprintf("Risk sub-cohort %s: %d rows", params$cohort, nrow(dt.rf)))
## Risk sub-cohort MESA: 891 rows
Sanity check: the intersection between NO_RISK and RISK id’s should be zero
test_that("Unique IDs", {
expect_equal(length(intersect(dt.rf$ID, dt.norf$ID)), 0)
})
## Test passed 🌈
dt <- bind_rows(dt.norf, dt.rf) %>%
select(-c(NoRisk))
message(sprintf("Training data: %d rows", nrow(dt)))
## Training data: 1288 rows
dt %>% select(c(Sex, sym(params$rf_name))) %>% table() %>%
kbl(caption = "Risk factor distributions") %>% kable_styling("hover", full_width = F, position="left")
NO_RISK | RISK | |
---|---|---|
female | 219 | 413 |
male | 178 | 478 |
just for fixing plot title
cohort_title <- if_else(params$cohort == "UKBB", "UK Biobank", params$cohort)
model <- list()
expl_vars <- readMat(paste("PCA", params$cohort, "PCA_explained.mat", sep = "/"))$explained
model$npcs <- length(expl_vars[cumsum(expl_vars) < params$pca_var])
message(sprintf("Number of PC components with %.2f%% variance explained: %d", params$pca_var, model$npcs))
## Number of PC components with 99.90% variance explained: 176
rm(expl_vars)
# this is a combined X (Age + Sex + PCScores) & Y (Risk Factor)
model$dt.train <- inner_join(
dt %>%
select(c(ID, Age, Sex, sym(params$rf_name))) %>%
mutate(
Sex = as.numeric(Sex)
),
cbind(
read.csv(paste("PCA", sprintf("%s_ids.csv", params$cohort), sep="/")),
readMat(paste("PCA", params$cohort, "PCA_score.mat", sep="/"))$score[, 1:model$npcs]
),
by = c("ID" = "ID"))
# check the cohort
message(sprintf("Number of cases = %d, columns = %d", nrow(model$dt.train), ncol(model$dt.train)))
## Number of cases = 1288, columns = 180
This should only include that specific cohort
test_that("Check cohort", {
expect_equal(substr(params$cohort, 1, 3), (model$dt.train %>% transmute(cohort = substr(ID, 1, 3)) %>% distinct())$cohort)
})
## Test passed 😸
No NA rows
test_that("No NA rows", {
expect_equal(0, sum(is.na(model$dt.train)))
})
## Test passed 🥳
We’re going to use 5-fold cross validation to determine the optimal
parameter for PLS, which is the ncomp
.
(m_kcv <- train_pls(as.formula(sprintf("%s ~ Age + Sex + .", params$rf_name)), dt = model$dt.train %>% select(-c(ID)), n_comps=params$max_ncomps))
## + Fold1: ncomp=30
## - Fold1: ncomp=30
## + Fold2: ncomp=30
## - Fold2: ncomp=30
## + Fold3: ncomp=30
## - Fold3: ncomp=30
## + Fold4: ncomp=30
## - Fold4: ncomp=30
## + Fold5: ncomp=30
## - Fold5: ncomp=30
## Aggregating results
## Selecting tuning parameters
## Fitting ncomp = 8 on full training set
## Partial Least Squares
##
## 1288 samples
## 178 predictor
## 2 classes: 'NO_RISK', 'RISK'
##
## Pre-processing: centered (178)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1030, 1030, 1031, 1030, 1031
## Resampling results across tuning parameters:
##
## ncomp ROC Sens Spec
## 1 0.6508515 0.03522152 0.9842759
## 2 0.6839479 0.17629747 0.9539891
## 3 0.6939703 0.22674051 0.9326596
## 4 0.6965144 0.22164557 0.9281840
## 5 0.7007915 0.25183544 0.8922855
## 6 0.7012484 0.25174051 0.8945201
## 7 0.7013055 0.28199367 0.8877911
## 8 0.7067227 0.30718354 0.8788274
## 9 0.7051157 0.31977848 0.8754378
## 10 0.6986945 0.31468354 0.8732032
## 11 0.6944174 0.32977848 0.8743331
## 12 0.6929334 0.32712025 0.8687214
## 13 0.6914168 0.31702532 0.8541146
## 14 0.6873999 0.32471519 0.8440336
## 15 0.6831073 0.33974684 0.8451635
## 16 0.6808053 0.32474684 0.8451698
## 17 0.6770774 0.32724684 0.8395518
## 18 0.6753064 0.31712025 0.8361810
## 19 0.6747692 0.33237342 0.8339276
## 20 0.6708917 0.33740506 0.8294332
## 21 0.6690084 0.33731013 0.8395330
## 22 0.6670584 0.35237342 0.8294332
## 23 0.6667311 0.34477848 0.8350386
## 24 0.6684801 0.33721519 0.8294395
## 25 0.6697518 0.33727848 0.8327789
## 26 0.6683671 0.32971519 0.8316553
## 27 0.6694909 0.32718354 0.8316553
## 28 0.6706369 0.32968354 0.8294018
## 29 0.6692263 0.33218354 0.8282845
## 30 0.6694000 0.33218354 0.8327789
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was ncomp = 8.
Get the number of component
(model$ncomp <- m_kcv$bestTune$ncomp)
## [1] 8
Plot for analysis
plot(m_kcv, main=sprintf("PLS components (%s - %s)", params$rf_name, params$cohort))
After we get the optimal parameter, we train the PLS using leave-one-out cross validation. Since this will take time, we need multiple cores to compute.
Create train control with LOOCV
tc_loo <- trainControl(method="LOOCV", savePredictions = "all", classProbs = TRUE, verboseIter=FALSE,
summaryFunction = twoClassSummary, allowParallel = TRUE)
# parallel cores
if( n_cores > 1 ) {
cl <- makeCluster(n_cores - 1, outfile = "")
registerDoParallel(cl)
getDoParWorkers()
}
## [1] 19
# train (take a while)
model$pls <- train(
form = sprintf("%s ~ Age + Sex + .", params$rf_name) %>% as.formula(),
data = model$dt.train %>% select(-ID),
method = "pls",
metric = "ROC",
preProc = c("center"),
tuneGrid = data.frame(ncomp=model$ncomp),
probMethod = "softmax",
trControl = tc_loo
)
# unregister cores
if( n_cores > 1 ) {
stopCluster(cl)
registerDoSEQ()
}
model$pls
## Partial Least Squares
##
## 1288 samples
## 178 predictor
## 2 classes: 'NO_RISK', 'RISK'
##
## Pre-processing: centered (178)
## Resampling: Leave-One-Out Cross-Validation
## Summary of sample sizes: 1287, 1287, 1287, 1287, 1287, 1287, ...
## Resampling results:
##
## ROC Sens Spec
## 0.7060643 0.2947103 0.8945006
##
## Tuning parameter 'ncomp' was held constant at a value of 8
Or use getTrainPerf to get the results
getTrainPerf(model$pls)
## TrainROC TrainSens TrainSpec method
## 1 0.7060643 0.2947103 0.8945006 pls
The prediction is in model$pls$pred
data frame. Let’s
plot the training ROC
Check the level order, because RISK should be the first, since that’s the prediction target.
levels(model$pls$pred$obs)
## [1] "NO_RISK" "RISK"
Calculate the ROC. Note we need to reverse the category level.
(m_roc <- roc(model$pls$pred$obs, model$pls$pred$RISK, levels = rev(levels(model$pls$pred$obs))))
## Setting direction: controls > cases
##
## Call:
## roc.default(response = model$pls$pred$obs, predictor = model$pls$pred$RISK, levels = rev(levels(model$pls$pred$obs)))
##
## Data: model$pls$pred$RISK in 891 controls (model$pls$pred$obs RISK) > 397 cases (model$pls$pred$obs NO_RISK).
## Area under the curve: 0.7061
plot(m_roc, legacy_axes=TRUE, main = sprintf("Training ROC: %s (%s)", params$rf_name, params$cohort))
coef(model$pls$finalModel)[1:10,,]
## NO_RISK RISK
## Age -0.0055164876 0.0055164876
## Sex 0.0003581028 -0.0003581028
## `1` 0.0006090431 -0.0006090431
## `2` 0.0003197629 -0.0003197629
## `3` -0.0002755150 0.0002755150
## `4` 0.0012688524 -0.0012688524
## `5` -0.0002936964 0.0002936964
## `6` 0.0011158877 -0.0011158877
## `7` 0.0000873365 -0.0000873365
## `8` 0.0001738379 -0.0001738379
Add some other information too in the model
model$cohort <- params$cohort
model$risk_factor <- params$rf_name
model$pca_var <- params$pca_var
model_filename <- paste(params$output_folder, sprintf("PLS_%s_%s.rds", params$cohort, params$rf_name), sep="/")
write_rds(model, file=model_filename, compress = "gz")
message(sprintf("Saved model to %s", model_filename))
## Saved model to PLS/PLS_MESA_Smoking.rds