knitr::opts_chunk$set(echo = TRUE)
library(caret)
library(R.matlab)
library(tidyverse)
library(pROC)
library(broom)
library(kableExtra)
library(rlang)
library(testthat)
library(doParallel)
source("train_pls_formulae.R")
n_cores <- detectCores()
message(sprintf("Using %d cores", n_cores))
## Using 20 cores
Note: the output HTML & the training RDS data are saved in PLS.
name | value |
---|---|
Cohort name | UKBB |
Risk factor | Diabetes |
Maximum number of PLS components | 30 |
Pct PCA variance explained (%) | 99.9 |
Data file | MESA_UKBB_FinalData.csv |
dt.ori <- read_csv(datafile, show_col_types = FALSE) %>%
filter(Cohort == params$cohort) %>%
select(c(ID, Age, Sex, NoRisk, sym(params$rf_name))) %>%
mutate(
!!sym(params$rf_name) := recode_factor(as.factor(!!sym(params$rf_name)), "FALSE" = "NO_RISK", "TRUE" = "RISK"),
Sex = as.factor(Sex)
)
message(sprintf("Original %s: %d rows", params$cohort, nrow(dt.ori)))
## Original UKBB: 2960 rows
dt.norf <- filter(dt.ori, NoRisk)
message(sprintf("No risk sub-cohort %s: %d rows", params$cohort, nrow(dt.norf)))
## No risk sub-cohort UKBB: 645 rows
dt.rf <- filter(dt.ori, !!sym(params$rf_name) == "RISK")
message(sprintf("Risk sub-cohort %s: %d rows", params$cohort, nrow(dt.rf)))
## Risk sub-cohort UKBB: 159 rows
Sanity check: the intersection between NO_RISK and RISK id’s should be zero
test_that("Unique IDs", {
expect_equal(length(intersect(dt.rf$ID, dt.norf$ID)), 0)
})
## Test passed 🎊
dt <- bind_rows(dt.norf, dt.rf) %>%
select(-c(NoRisk))
message(sprintf("Training data: %d rows", nrow(dt)))
## Training data: 804 rows
dt %>% select(c(Sex, sym(params$rf_name))) %>% table() %>%
kbl(caption = "Risk factor distributions") %>% kable_styling("hover", full_width = F, position="left")
NO_RISK | RISK | |
---|---|---|
female | 395 | 65 |
male | 250 | 94 |
just for fixing plot title
cohort_title <- if_else(params$cohort == "UKBB", "UK Biobank", params$cohort)
model <- list()
expl_vars <- readMat(paste("PCA", params$cohort, "PCA_explained.mat", sep = "/"))$explained
model$npcs <- length(expl_vars[cumsum(expl_vars) < params$pca_var])
message(sprintf("Number of PC components with %.2f%% variance explained: %d", params$pca_var, model$npcs))
## Number of PC components with 99.90% variance explained: 210
rm(expl_vars)
# this is a combined X (Age + Sex + PCScores) & Y (Risk Factor)
model$dt.train <- inner_join(
dt %>%
select(c(ID, Age, Sex, sym(params$rf_name))) %>%
mutate(
Sex = as.numeric(Sex)
),
cbind(
read.csv(paste("PCA", sprintf("%s_ids.csv", params$cohort), sep="/")),
readMat(paste("PCA", params$cohort, "PCA_score.mat", sep="/"))$score[, 1:model$npcs]
),
by = c("ID" = "ID"))
# check the cohort
message(sprintf("Number of cases = %d, columns = %d", nrow(model$dt.train), ncol(model$dt.train)))
## Number of cases = 804, columns = 214
This should only include that specific cohort
test_that("Check cohort", {
expect_equal(substr(params$cohort, 1, 3), (model$dt.train %>% transmute(cohort = substr(ID, 1, 3)) %>% distinct())$cohort)
})
## Test passed 🎊
No NA rows
test_that("No NA rows", {
expect_equal(0, sum(is.na(model$dt.train)))
})
## Test passed 🥇
We’re going to use 5-fold cross validation to determine the optimal
parameter for PLS, which is the ncomp
.
(m_kcv <- train_pls(as.formula(sprintf("%s ~ Age + Sex + .", params$rf_name)), dt = model$dt.train %>% select(-c(ID)), n_comps=params$max_ncomps))
## + Fold1: ncomp=30
## - Fold1: ncomp=30
## + Fold2: ncomp=30
## - Fold2: ncomp=30
## + Fold3: ncomp=30
## - Fold3: ncomp=30
## + Fold4: ncomp=30
## - Fold4: ncomp=30
## + Fold5: ncomp=30
## - Fold5: ncomp=30
## Aggregating results
## Selecting tuning parameters
## Fitting ncomp = 16 on full training set
## Partial Least Squares
##
## 804 samples
## 212 predictors
## 2 classes: 'NO_RISK', 'RISK'
##
## Pre-processing: centered (212)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 643, 644, 643, 643, 643
## Resampling results across tuning parameters:
##
## ncomp ROC Sens Spec
## 1 0.6492170 1.0000000 0.0062500
## 2 0.7253298 0.9782946 0.1252016
## 3 0.7581724 0.9751938 0.2389113
## 4 0.7664182 0.9689922 0.2391129
## 5 0.7765551 0.9689922 0.2264113
## 6 0.7866560 0.9627907 0.2893145
## 7 0.7835490 0.9565891 0.2891129
## 8 0.7772818 0.9488372 0.3391129
## 9 0.7821612 0.9488372 0.3141129
## 10 0.7818361 0.9503876 0.3266129
## 11 0.7811797 0.9426357 0.3264113
## 12 0.7853932 0.9457364 0.3457661
## 13 0.7862575 0.9333333 0.3520161
## 14 0.7870702 0.9240310 0.3836694
## 15 0.7901585 0.9271318 0.3772177
## 16 0.7943408 0.9271318 0.3903226
## 17 0.7941673 0.9209302 0.3838710
## 18 0.7870968 0.9224806 0.4215726
## 19 0.7827879 0.9240310 0.3963710
## 20 0.7795027 0.9271318 0.4151210
## 21 0.7828723 0.9209302 0.4282258
## 22 0.7801232 0.9178295 0.4405242
## 23 0.7779476 0.9209302 0.4344758
## 24 0.7797199 0.9193798 0.4469758
## 25 0.7786322 0.9209302 0.4090726
## 26 0.7755861 0.9193798 0.4592742
## 27 0.7799747 0.9131783 0.4342742
## 28 0.7770021 0.9085271 0.4217742
## 29 0.7725541 0.9193798 0.4280242
## 30 0.7742139 0.9131783 0.4280242
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was ncomp = 16.
Get the number of component
(model$ncomp <- m_kcv$bestTune$ncomp)
## [1] 16
Plot for analysis
plot(m_kcv, main=sprintf("PLS components (%s - %s)", params$rf_name, params$cohort))
After we get the optimal parameter, we train the PLS using leave-one-out cross validation. Since this will take time, we need multiple cores to compute.
Create train control with LOOCV
tc_loo <- trainControl(method="LOOCV", savePredictions = "all", classProbs = TRUE, verboseIter=FALSE,
summaryFunction = twoClassSummary, allowParallel = TRUE)
# parallel cores
if( n_cores > 1 ) {
cl <- makeCluster(n_cores - 1, outfile = "")
registerDoParallel(cl)
getDoParWorkers()
}
## [1] 19
# train (take a while)
model$pls <- train(
form = sprintf("%s ~ Age + Sex + .", params$rf_name) %>% as.formula(),
data = model$dt.train %>% select(-ID),
method = "pls",
metric = "ROC",
preProc = c("center"),
tuneGrid = data.frame(ncomp=model$ncomp),
probMethod = "softmax",
trControl = tc_loo
)
# unregister cores
if( n_cores > 1 ) {
stopCluster(cl)
registerDoSEQ()
}
model$pls
## Partial Least Squares
##
## 804 samples
## 212 predictors
## 2 classes: 'NO_RISK', 'RISK'
##
## Pre-processing: centered (212)
## Resampling: Leave-One-Out Cross-Validation
## Summary of sample sizes: 803, 803, 803, 803, 803, 803, ...
## Resampling results:
##
## ROC Sens Spec
## 0.7908927 0.9333333 0.3584906
##
## Tuning parameter 'ncomp' was held constant at a value of 16
Or use getTrainPerf to get the results
getTrainPerf(model$pls)
## TrainROC TrainSens TrainSpec method
## 1 0.7908927 0.9333333 0.3584906 pls
The prediction is in model$pls$pred
data frame. Let’s
plot the training ROC
Check the level order, because RISK should be the first, since that’s the prediction target.
levels(model$pls$pred$obs)
## [1] "NO_RISK" "RISK"
Calculate the ROC. Note we need to reverse the category level.
(m_roc <- roc(model$pls$pred$obs, model$pls$pred$RISK, levels = rev(levels(model$pls$pred$obs))))
## Setting direction: controls > cases
##
## Call:
## roc.default(response = model$pls$pred$obs, predictor = model$pls$pred$RISK, levels = rev(levels(model$pls$pred$obs)))
##
## Data: model$pls$pred$RISK in 159 controls (model$pls$pred$obs RISK) > 645 cases (model$pls$pred$obs NO_RISK).
## Area under the curve: 0.7909
plot(m_roc, legacy_axes=TRUE, main = sprintf("Training ROC: %s (%s)", params$rf_name, params$cohort))
coef(model$pls$finalModel)[1:10,,]
## NO_RISK RISK
## Age -6.324943e-03 6.324943e-03
## Sex 3.964181e-04 -3.964181e-04
## `1` 3.696745e-04 -3.696745e-04
## `2` 2.286540e-04 -2.286540e-04
## `3` -4.476987e-04 4.476987e-04
## `4` -9.143891e-04 9.143891e-04
## `5` 4.922849e-04 -4.922849e-04
## `6` 7.756114e-04 -7.756114e-04
## `7` -9.794765e-05 9.794765e-05
## `8` 8.053501e-04 -8.053501e-04
Add some other information too in the model
model$cohort <- params$cohort
model$risk_factor <- params$rf_name
model$pca_var <- params$pca_var
model_filename <- paste(params$output_folder, sprintf("PLS_%s_%s.rds", params$cohort, params$rf_name), sep="/")
write_rds(model, file=model_filename, compress = "gz")
message(sprintf("Saved model to %s", model_filename))
## Saved model to PLS/PLS_UKBB_Diabetes.rds