knitr::opts_chunk$set(echo = TRUE)
library(caret)
library(R.matlab)
library(tidyverse)
library(pROC)
library(broom)
library(kableExtra)
library(rlang)
library(testthat)
library(doParallel)
source("train_pls_formulae.R")
n_cores <- detectCores()
message(sprintf("Using %d cores", n_cores))
## Using 20 cores
Note: the output HTML & the training RDS data are saved in PLS.
name | value |
---|---|
Cohort name | UKBB |
Risk factor | Obesity |
Maximum number of PLS components | 30 |
Pct PCA variance explained (%) | 99.9 |
Data file | MESA_UKBB_FinalData.csv |
dt.ori <- read_csv(datafile, show_col_types = FALSE) %>%
filter(Cohort == params$cohort) %>%
select(c(ID, Age, Sex, NoRisk, sym(params$rf_name))) %>%
mutate(
!!sym(params$rf_name) := recode_factor(as.factor(!!sym(params$rf_name)), "FALSE" = "NO_RISK", "TRUE" = "RISK"),
Sex = as.factor(Sex)
)
message(sprintf("Original %s: %d rows", params$cohort, nrow(dt.ori)))
## Original UKBB: 2960 rows
dt.norf <- filter(dt.ori, NoRisk)
message(sprintf("No risk sub-cohort %s: %d rows", params$cohort, nrow(dt.norf)))
## No risk sub-cohort UKBB: 645 rows
dt.rf <- filter(dt.ori, !!sym(params$rf_name) == "RISK")
message(sprintf("Risk sub-cohort %s: %d rows", params$cohort, nrow(dt.rf)))
## Risk sub-cohort UKBB: 532 rows
Sanity check: the intersection between NO_RISK and RISK id’s should be zero
test_that("Unique IDs", {
expect_equal(length(intersect(dt.rf$ID, dt.norf$ID)), 0)
})
## Test passed 🎊
dt <- bind_rows(dt.norf, dt.rf) %>%
select(-c(NoRisk))
message(sprintf("Training data: %d rows", nrow(dt)))
## Training data: 1177 rows
dt %>% select(c(Sex, sym(params$rf_name))) %>% table() %>%
kbl(caption = "Risk factor distributions") %>% kable_styling("hover", full_width = F, position="left")
NO_RISK | RISK | |
---|---|---|
female | 395 | 282 |
male | 250 | 250 |
just for fixing plot title
cohort_title <- if_else(params$cohort == "UKBB", "UK Biobank", params$cohort)
model <- list()
expl_vars <- readMat(paste("PCA", params$cohort, "PCA_explained.mat", sep = "/"))$explained
model$npcs <- length(expl_vars[cumsum(expl_vars) < params$pca_var])
message(sprintf("Number of PC components with %.2f%% variance explained: %d", params$pca_var, model$npcs))
## Number of PC components with 99.90% variance explained: 210
rm(expl_vars)
# this is a combined X (Age + Sex + PCScores) & Y (Risk Factor)
model$dt.train <- inner_join(
dt %>%
select(c(ID, Age, Sex, sym(params$rf_name))) %>%
mutate(
Sex = as.numeric(Sex)
),
cbind(
read.csv(paste("PCA", sprintf("%s_ids.csv", params$cohort), sep="/")),
readMat(paste("PCA", params$cohort, "PCA_score.mat", sep="/"))$score[, 1:model$npcs]
),
by = c("ID" = "ID"))
# check the cohort
message(sprintf("Number of cases = %d, columns = %d", nrow(model$dt.train), ncol(model$dt.train)))
## Number of cases = 1177, columns = 214
This should only include that specific cohort
test_that("Check cohort", {
expect_equal(substr(params$cohort, 1, 3), (model$dt.train %>% transmute(cohort = substr(ID, 1, 3)) %>% distinct())$cohort)
})
## Test passed 🎉
No NA rows
test_that("No NA rows", {
expect_equal(0, sum(is.na(model$dt.train)))
})
## Test passed 🌈
We’re going to use 5-fold cross validation to determine the optimal
parameter for PLS, which is the ncomp
.
(m_kcv <- train_pls(as.formula(sprintf("%s ~ Age + Sex + .", params$rf_name)), dt = model$dt.train %>% select(-c(ID)), n_comps=params$max_ncomps))
## + Fold1: ncomp=30
## - Fold1: ncomp=30
## + Fold2: ncomp=30
## - Fold2: ncomp=30
## + Fold3: ncomp=30
## - Fold3: ncomp=30
## + Fold4: ncomp=30
## - Fold4: ncomp=30
## + Fold5: ncomp=30
## - Fold5: ncomp=30
## Aggregating results
## Selecting tuning parameters
## Fitting ncomp = 23 on full training set
## Partial Least Squares
##
## 1177 samples
## 212 predictor
## 2 classes: 'NO_RISK', 'RISK'
##
## Pre-processing: centered (212)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 942, 942, 941, 941, 942
## Resampling results across tuning parameters:
##
## ncomp ROC Sens Spec
## 1 0.6762753 0.7317829 0.4849586
## 2 0.7455853 0.7798450 0.5865103
## 3 0.7840304 0.7891473 0.6202610
## 4 0.7995372 0.8077519 0.6296420
## 5 0.8057131 0.8062016 0.6483689
## 6 0.8142437 0.8015504 0.6689296
## 7 0.8145216 0.8046512 0.6728090
## 8 0.8154693 0.8077519 0.6578205
## 9 0.8160226 0.7984496 0.6522130
## 10 0.8182237 0.8031008 0.6521954
## 11 0.8200095 0.8108527 0.6671487
## 12 0.8163700 0.7968992 0.6578029
## 13 0.8197876 0.8000000 0.6653677
## 14 0.8179726 0.8000000 0.6673250
## 15 0.8184986 0.8000000 0.6672897
## 16 0.8198493 0.7953488 0.6767589
## 17 0.8185766 0.7937984 0.6748545
## 18 0.8206500 0.7984496 0.6673426
## 19 0.8186670 0.8031008 0.6598484
## 20 0.8166837 0.7922481 0.6636219
## 21 0.8154491 0.7844961 0.6692118
## 22 0.8173909 0.7798450 0.6786281
## 23 0.8209585 0.7844961 0.6710986
## 24 0.8186402 0.7813953 0.6767237
## 25 0.8157599 0.7798450 0.6692118
## 26 0.8166383 0.7813953 0.6767413
## 27 0.8143570 0.7767442 0.6560924
## 28 0.8136213 0.7798450 0.6710986
## 29 0.8128925 0.7813953 0.6710633
## 30 0.8124240 0.7751938 0.6729325
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was ncomp = 23.
Get the number of component
(model$ncomp <- m_kcv$bestTune$ncomp)
## [1] 23
Plot for analysis
plot(m_kcv, main=sprintf("PLS components (%s - %s)", params$rf_name, params$cohort))
After we get the optimal parameter, we train the PLS using leave-one-out cross validation. Since this will take time, we need multiple cores to compute.
Create train control with LOOCV
tc_loo <- trainControl(method="LOOCV", savePredictions = "all", classProbs = TRUE, verboseIter=FALSE,
summaryFunction = twoClassSummary, allowParallel = TRUE)
# parallel cores
if( n_cores > 1 ) {
cl <- makeCluster(n_cores - 1, outfile = "")
registerDoParallel(cl)
getDoParWorkers()
}
## [1] 19
# train (take a while)
model$pls <- train(
form = sprintf("%s ~ Age + Sex + .", params$rf_name) %>% as.formula(),
data = model$dt.train %>% select(-ID),
method = "pls",
metric = "ROC",
preProc = c("center"),
tuneGrid = data.frame(ncomp=model$ncomp),
probMethod = "softmax",
trControl = tc_loo
)
# unregister cores
if( n_cores > 1 ) {
stopCluster(cl)
registerDoSEQ()
}
model$pls
## Partial Least Squares
##
## 1177 samples
## 212 predictor
## 2 classes: 'NO_RISK', 'RISK'
##
## Pre-processing: centered (212)
## Resampling: Leave-One-Out Cross-Validation
## Summary of sample sizes: 1176, 1176, 1176, 1176, 1176, 1176, ...
## Resampling results:
##
## ROC Sens Spec
## 0.8214781 0.8077519 0.6917293
##
## Tuning parameter 'ncomp' was held constant at a value of 23
Or use getTrainPerf to get the results
getTrainPerf(model$pls)
## TrainROC TrainSens TrainSpec method
## 1 0.8214781 0.8077519 0.6917293 pls
The prediction is in model$pls$pred
data frame. Let’s
plot the training ROC
Check the level order, because RISK should be the first, since that’s the prediction target.
levels(model$pls$pred$obs)
## [1] "NO_RISK" "RISK"
Calculate the ROC. Note we need to reverse the category level.
(m_roc <- roc(model$pls$pred$obs, model$pls$pred$RISK, levels = rev(levels(model$pls$pred$obs))))
## Setting direction: controls > cases
##
## Call:
## roc.default(response = model$pls$pred$obs, predictor = model$pls$pred$RISK, levels = rev(levels(model$pls$pred$obs)))
##
## Data: model$pls$pred$RISK in 532 controls (model$pls$pred$obs RISK) > 645 cases (model$pls$pred$obs NO_RISK).
## Area under the curve: 0.8215
plot(m_roc, legacy_axes=TRUE, main = sprintf("Training ROC: %s (%s)", params$rf_name, params$cohort))
coef(model$pls$finalModel)[1:10,,]
## NO_RISK RISK
## Age -1.934603e-03 1.934603e-03
## Sex 7.487191e-03 -7.487191e-03
## `1` 5.102055e-04 -5.102055e-04
## `2` 2.588147e-04 -2.588147e-04
## `3` -9.317466e-04 9.317466e-04
## `4` -9.695002e-04 9.695002e-04
## `5` 6.608934e-04 -6.608934e-04
## `6` 6.949261e-04 -6.949261e-04
## `7` 3.170269e-05 -3.170269e-05
## `8` 4.911123e-04 -4.911123e-04
Add some other information too in the model
model$cohort <- params$cohort
model$risk_factor <- params$rf_name
model$pca_var <- params$pca_var
model_filename <- paste(params$output_folder, sprintf("PLS_%s_%s.rds", params$cohort, params$rf_name), sep="/")
write_rds(model, file=model_filename, compress = "gz")
message(sprintf("Saved model to %s", model_filename))
## Saved model to PLS/PLS_UKBB_Obesity.rds