knitr::opts_chunk$set(echo = TRUE)
library(caret)
library(R.matlab)
library(tidyverse)
library(pROC)
library(broom)
library(kableExtra)
library(rlang)
library(testthat)
library(doParallel)
source("train_pls_formulae.R")
n_cores <- detectCores()
message(sprintf("Using %d cores", n_cores))
## Using 20 cores
Note: the output HTML & the training RDS data are saved in PLS.
name | value |
---|---|
Cohort name | UKBB |
Risk factor | Smoking |
Maximum number of PLS components | 30 |
Pct PCA variance explained (%) | 99.9 |
Data file | MESA_UKBB_FinalData.csv |
dt.ori <- read_csv(datafile, show_col_types = FALSE) %>%
filter(Cohort == params$cohort) %>%
select(c(ID, Age, Sex, NoRisk, sym(params$rf_name))) %>%
mutate(
!!sym(params$rf_name) := recode_factor(as.factor(!!sym(params$rf_name)), "FALSE" = "NO_RISK", "TRUE" = "RISK"),
Sex = as.factor(Sex)
)
message(sprintf("Original %s: %d rows", params$cohort, nrow(dt.ori)))
## Original UKBB: 2960 rows
dt.norf <- filter(dt.ori, NoRisk)
message(sprintf("No risk sub-cohort %s: %d rows", params$cohort, nrow(dt.norf)))
## No risk sub-cohort UKBB: 645 rows
dt.rf <- filter(dt.ori, !!sym(params$rf_name) == "RISK")
message(sprintf("Risk sub-cohort %s: %d rows", params$cohort, nrow(dt.rf)))
## Risk sub-cohort UKBB: 1182 rows
Sanity check: the intersection between NO_RISK and RISK id’s should be zero
test_that("Unique IDs", {
expect_equal(length(intersect(dt.rf$ID, dt.norf$ID)), 0)
})
## Test passed 🎊
dt <- bind_rows(dt.norf, dt.rf) %>%
select(-c(NoRisk))
message(sprintf("Training data: %d rows", nrow(dt)))
## Training data: 1827 rows
dt %>% select(c(Sex, sym(params$rf_name))) %>% table() %>%
kbl(caption = "Risk factor distributions") %>% kable_styling("hover", full_width = F, position="left")
NO_RISK | RISK | |
---|---|---|
female | 395 | 560 |
male | 250 | 622 |
just for fixing plot title
cohort_title <- if_else(params$cohort == "UKBB", "UK Biobank", params$cohort)
model <- list()
expl_vars <- readMat(paste("PCA", params$cohort, "PCA_explained.mat", sep = "/"))$explained
model$npcs <- length(expl_vars[cumsum(expl_vars) < params$pca_var])
message(sprintf("Number of PC components with %.2f%% variance explained: %d", params$pca_var, model$npcs))
## Number of PC components with 99.90% variance explained: 210
rm(expl_vars)
# this is a combined X (Age + Sex + PCScores) & Y (Risk Factor)
model$dt.train <- inner_join(
dt %>%
select(c(ID, Age, Sex, sym(params$rf_name))) %>%
mutate(
Sex = as.numeric(Sex)
),
cbind(
read.csv(paste("PCA", sprintf("%s_ids.csv", params$cohort), sep="/")),
readMat(paste("PCA", params$cohort, "PCA_score.mat", sep="/"))$score[, 1:model$npcs]
),
by = c("ID" = "ID"))
# check the cohort
message(sprintf("Number of cases = %d, columns = %d", nrow(model$dt.train), ncol(model$dt.train)))
## Number of cases = 1827, columns = 214
This should only include that specific cohort
test_that("Check cohort", {
expect_equal(substr(params$cohort, 1, 3), (model$dt.train %>% transmute(cohort = substr(ID, 1, 3)) %>% distinct())$cohort)
})
## Test passed 😀
No NA rows
test_that("No NA rows", {
expect_equal(0, sum(is.na(model$dt.train)))
})
## Test passed 😸
We’re going to use 5-fold cross validation to determine the optimal
parameter for PLS, which is the ncomp
.
(m_kcv <- train_pls(as.formula(sprintf("%s ~ Age + Sex + .", params$rf_name)), dt = model$dt.train %>% select(-c(ID)), n_comps=params$max_ncomps))
## + Fold1: ncomp=30
## - Fold1: ncomp=30
## + Fold2: ncomp=30
## - Fold2: ncomp=30
## + Fold3: ncomp=30
## - Fold3: ncomp=30
## + Fold4: ncomp=30
## - Fold4: ncomp=30
## + Fold5: ncomp=30
## - Fold5: ncomp=30
## Aggregating results
## Selecting tuning parameters
## Fitting ncomp = 6 on full training set
## Partial Least Squares
##
## 1827 samples
## 212 predictor
## 2 classes: 'NO_RISK', 'RISK'
##
## Pre-processing: centered (212)
## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 1461, 1462, 1461, 1462, 1462
## Resampling results across tuning parameters:
##
## ncomp ROC Sens Spec
## 1 0.6074807 0.02945736 0.9754380
## 2 0.6556874 0.23100775 0.9018022
## 3 0.6748175 0.26356589 0.8908317
## 4 0.6854824 0.30387597 0.8688407
## 5 0.6873838 0.31782946 0.8654509
## 6 0.6874211 0.32558140 0.8603840
## 7 0.6827327 0.33333333 0.8553243
## 8 0.6771454 0.33643411 0.8434778
## 9 0.6724043 0.34418605 0.8384074
## 10 0.6681054 0.35658915 0.8307874
## 11 0.6689635 0.36434109 0.8274262
## 12 0.6712258 0.36434109 0.8223343
## 13 0.6728020 0.38449612 0.8104663
## 14 0.6713925 0.38449612 0.8113280
## 15 0.6738777 0.39534884 0.8087857
## 16 0.6742345 0.39069767 0.8071051
## 17 0.6752221 0.39844961 0.8037188
## 18 0.6704259 0.39689922 0.8011979
## 19 0.6702714 0.39534884 0.7986519
## 20 0.6629029 0.39534884 0.7918723
## 21 0.6590430 0.39379845 0.7901809
## 22 0.6584372 0.40310078 0.7901809
## 23 0.6584101 0.40620155 0.7910355
## 24 0.6587308 0.40000000 0.7884932
## 25 0.6583679 0.39379845 0.7935636
## 26 0.6560695 0.39844961 0.7808839
## 27 0.6559729 0.40465116 0.7850998
## 28 0.6553352 0.40930233 0.7791819
## 29 0.6545037 0.40775194 0.7758028
## 30 0.6540642 0.41395349 0.7800365
##
## ROC was used to select the optimal model using the largest value.
## The final value used for the model was ncomp = 6.
Get the number of component
(model$ncomp <- m_kcv$bestTune$ncomp)
## [1] 6
Plot for analysis
plot(m_kcv, main=sprintf("PLS components (%s - %s)", params$rf_name, params$cohort))
After we get the optimal parameter, we train the PLS using leave-one-out cross validation. Since this will take time, we need multiple cores to compute.
Create train control with LOOCV
tc_loo <- trainControl(method="LOOCV", savePredictions = "all", classProbs = TRUE, verboseIter=FALSE,
summaryFunction = twoClassSummary, allowParallel = TRUE)
# parallel cores
if( n_cores > 1 ) {
cl <- makeCluster(n_cores - 1, outfile = "")
registerDoParallel(cl)
getDoParWorkers()
}
## [1] 19
# train (take a while)
model$pls <- train(
form = sprintf("%s ~ Age + Sex + .", params$rf_name) %>% as.formula(),
data = model$dt.train %>% select(-ID),
method = "pls",
metric = "ROC",
preProc = c("center"),
tuneGrid = data.frame(ncomp=model$ncomp),
probMethod = "softmax",
trControl = tc_loo
)
# unregister cores
if( n_cores > 1 ) {
stopCluster(cl)
registerDoSEQ()
}
model$pls
## Partial Least Squares
##
## 1827 samples
## 212 predictor
## 2 classes: 'NO_RISK', 'RISK'
##
## Pre-processing: centered (212)
## Resampling: Leave-One-Out Cross-Validation
## Summary of sample sizes: 1826, 1826, 1826, 1826, 1826, 1826, ...
## Resampling results:
##
## ROC Sens Spec
## 0.6935073 0.3069767 0.8663283
##
## Tuning parameter 'ncomp' was held constant at a value of 6
Or use getTrainPerf to get the results
getTrainPerf(model$pls)
## TrainROC TrainSens TrainSpec method
## 1 0.6935073 0.3069767 0.8663283 pls
The prediction is in model$pls$pred
data frame. Let’s
plot the training ROC
Check the level order, because RISK should be the first, since that’s the prediction target.
levels(model$pls$pred$obs)
## [1] "NO_RISK" "RISK"
Calculate the ROC. Note we need to reverse the category level.
(m_roc <- roc(model$pls$pred$obs, model$pls$pred$RISK, levels = rev(levels(model$pls$pred$obs))))
## Setting direction: controls > cases
##
## Call:
## roc.default(response = model$pls$pred$obs, predictor = model$pls$pred$RISK, levels = rev(levels(model$pls$pred$obs)))
##
## Data: model$pls$pred$RISK in 1182 controls (model$pls$pred$obs RISK) > 645 cases (model$pls$pred$obs NO_RISK).
## Area under the curve: 0.6935
plot(m_roc, legacy_axes=TRUE, main = sprintf("Training ROC: %s (%s)", params$rf_name, params$cohort))
coef(model$pls$finalModel)[1:10,,]
## NO_RISK RISK
## Age -1.248862e-03 1.248862e-03
## Sex 8.620371e-06 -8.620371e-06
## `1` 3.675642e-04 -3.675642e-04
## `2` 2.642924e-04 -2.642924e-04
## `3` -3.808875e-04 3.808875e-04
## `4` -7.600182e-04 7.600182e-04
## `5` 8.175104e-04 -8.175104e-04
## `6` 1.004172e-03 -1.004172e-03
## `7` 3.190593e-04 -3.190593e-04
## `8` 6.972424e-04 -6.972424e-04
Add some other information too in the model
model$cohort <- params$cohort
model$risk_factor <- params$rf_name
model$pca_var <- params$pca_var
model_filename <- paste(params$output_folder, sprintf("PLS_%s_%s.rds", params$cohort, params$rf_name), sep="/")
write_rds(model, file=model_filename, compress = "gz")
message(sprintf("Saved model to %s", model_filename))
## Saved model to PLS/PLS_UKBB_Smoking.rds